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‘K. Y. Kondrat‘'yev

"Thermal Radiation Effects in the Upper Atmosphere"

Soon after the discovery of the stratosphere at the beginning
of this century, a number of theories were proposed explaining the
isothermal conditions in the stratosphere by the existence of a state
of radiative equilibrium in this layer.

Since then, the atmosphere has been traditionally divided into
the "lower" (convection zone), and the "upper" (radiation zone).

Our knowledge about the principles of the thermal regime of
the upper atmosphere has greatly increased in the last decades and,
especially, in recent years.

The fact establishing that the atmosphere is in a state of
turbulent mixing up to an altitude of about 100 km is of great im-
portance in this respect. Fram this it follows that radiation is not
the only factor controlling the thermal regime of the stratosphere
and the thermosphere. The situation in the thermosphere is similar
as regards thermal conductivity.

The variety of mechanisms determining the thermal regime of the
upper part of the thermosphere and the exosphere is extremely great.

Despite the facts mentioned above, the conclusion that radiation
is one of the major factors in the thermal regime of the upper atmos-
phere still holds.

It is for this reason that we are discussing today the problem
of thermal radiation effects in the upper atmosphere.

The problem under consideration is very broad and diversified.
We shall attempt to review this problem without going into a detailed
analysis of it. On the contrary, our purpose is to present certain
views on the thermal effects of radiation in the upper atmosphere based
only on investigations conducted in this field by the Department of
Atmospheric Physics at lLeningrad University.

In order to solve the problem of the thermal regime in the upper
atmosphere, we must first of all keep in mind the essential character-
istics of the processes taking place in different atmospheric layers.

The division of the upper atmosphere into the stratosphere,
thermosphere, and exosphere means, in particular, that there are several
zones which have a specific thermal regime.

Numerous computations and, in part, direct measurements [see
(1,2)] show that extensive regions of the stratosphere and mesosphere
are in a state close to radiative equilibrium.

To illustrate this, we shall present some of the results of
complex investigations on the radiation balance in the troposphere and
stratosphere conducted at Ieningrad University.




We have developed a complex of automatic balloon instruments
which meke 1t possible to measure the radiation balance, its components,
the main meteorological elements (temperature, pressure, and air hu-
midity) and the ozone content in the atmosphere during the daytime.

Fig.l. gives the results of measurements made on November 14,
1961, which clearly show that the radiative equilibrium zone is found
above the 9-km level. Even though we know that the influence of tur-
bulent mixing may be rather importent at this level, it is not possible
yet reliably and fully to account for this influence, since our knowledge
of the quantitative characteristics of turbulence in the stratosphere
and mesosphere is insufficient. Hence we may in turn consider the prob-
lem of the vertical temperature distribution in the stratosphere and
mesosphere within the framework of the theory of the radiative equi-
librium by utilizing contemporary notions concerning radiative transfer
in the upper atmosphere. Unfortunately, the little information avail-
able on humidity in the stratosphere prevents us from making reliable
quantitative calculations of the temperature distribution in this layer.

That is why G.M.Shved in a work which we shall discuss later
takes into consideration the temperature distribution in the mesosphere,
i.e. at altitudes from 30 km to 80 km.

It is assumed thet during the day absorption of solar radiation

by molecular oxygen and ozone ordinarily is equivalent to long-wave
radiation in the 15p CO, band and the 9.6p ozone band in the mesosphere.

Our purpose is to calculate the constant vertical temperature
distribution based on these assumptions.

The mesosphere is divided into n Ilayers. For each layer the
condition of radiative equilibrium is put down. The intensity of black
body radiation By(T) is approximated by a Taylor's power series

m —
ByM= ) bu ¢, (1)
1=0 T
where by are the coefficients of the series. The spectral region under

consideration is divided {nto a mmber of intervals (index r) in which

By(T) may be assumed to vary only slightly.

The temperature distribution is found by solving n equations with
respect to n unknowns of the '6; type:

n n 1
b= z/\]k o ,i=1,2. . . n, (2)

k=1 1=0
where

by = hg (z5) + 2 Z Tr f dyky(z) Eq(zip 05 v); (3)
Tr ot
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Here k.V(z) is the absorption coefficient of long-wave radiation at fre-

quency ¥V, and at altitude zj

> b
Ep(a,b;v) = [dt . the-t [ k,(3)d3
1 ‘ a
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(A_Z)k is the thickness of the layer in which temperature is considered
to be constant and is equal to Ty;

h (z) is solar heating for a unit volume (it depends on the angular solar
altitude and the Oy and Oy content);

Jeo 1is infrared radiation in the space r bétween the surface of the

‘earth and the stmosphere below the level Waﬁ %Zero;

(- P ‘ : B R
'Brl = { Az Be ta) : 131 (5)
brl e 4"J.dvku(z) N 1=0
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where b, is determined from (I). The second item in byy is related to
the deviation from emisgsion asccording to Kirchhoff's law;
6 is the lifetime of the excited vibrational state of a molecule;
A is the time required for the vibrational states to return to
normal by collision. Since AN—;-w (p is atmospheric pressure), a cor-

rection for the deviation from Kirchhoff's law is significant for the
154 band of 002 above an altitude of 70 lm. This correction 1s not

essential for 03, since the contribution of O3 to cooling is negligibly

swall from 60 km up in comparison to the contribution of CO,.




' Thus, the problemw boils down to calculsting the following
integrals for all r intervals:

IIduku(zﬂEz(zi, 0;v) ,
(6)
J;dvkv(zi) ky (zy) Eq (2, 25 V)

Above 25-30 km for the P and R components of the vibrational-rotational
154 band of COp and 9.6u band of\03 we may assume that we have an iso-
lated line. ﬁ

The ILorentz half-width AAL'v p and the lines become so narrow

that thelr overlapping can be neglected.

For the Q component, the overlapping of the lines is very essen-
tial, with the possible exception of the upper mesosphere. Therefore
the question concerning the Q component requires special study.

However, even in this case we may expect satisfactory results by
approximation on the basis of an isolated line.

When the lines overlap significantly, the region of the Q com-
ponent becomes practically opaque and "does not take part” in radia-
tional heat exchange and, therefore, the contribution of the Q component
to radiative heating is small. When overlapping is not very great,
approximation on the basis of an isolated line can be used.

The integrals in (6) must be the sums of the following integrals
according to frequencies belonging to the individual lines:

Tduk,, (z)) Ey (24, 0;V)
- | (1)

Jdv iy (2 by (210 By (agy 235 0) -

The number of these integrals is determined by the number of lines in
the r interval. Integrals (7) mist be calculated for a set of § lines
of different intensities.

For each actual line with a certain intensity S, integrals (7)
are considered equal to the value computed for that intensity of the line
which is closest to the given actual intensity.

The calculations are made by taking into account the complex
Doppler-Lorentz shape of the line.

Therefore, it is important to take into account the dependence of

i
(7) on temperature. The Lorentz half-width is AUL ~ —— and the Doppler

half-width is A';) ~/ T.,This dependence is evidently not essential for



the range of atmospheric temperatures. However, the temperature dﬁpeﬂdQ“
ence of the intensity of the line mist also be taken into account

- ..ﬁ;», - o o E -
. e
S(T) ~ _1_ kT , (8)
T>

where E, i1s the vibrational energy of the molecule corresponding to the
lower state of vibrational transition; k is:Boltzmann's constant.,

Since there is reason to expect that the calculated temperature
distribution will qualitatively correspond to the observed distribution,
integrals (7) can be computed by using the standard vertical temperature
distribution (all other structural parameters of the atmosphere are
given in the same way). Note that calculation of integrals (7) by using
the real temperature distribution has an independent value; for example,
for computing the radiative heating of the atmosphere. Integrals (7)
are also calculated for a simple case where S§ 1s independent of T.

The last calculation is applicable only to the main vibrational
transition of the 154 band of CO, which contributes not less than 50%

of the total contribution of this band to the cooling of the mesosphere.
If the volume concentration of CO, is considered constant, then that of

03 changes grestly with altitude and must be taken into account in
integrals (7) for the 03 lines. By calculating the integrals by fre-

quency intervals of Finite width (the limits of integration are ¥ -¥;

and Vg + ¥y , where ¥ 1g the frequency of the center of the linme and ¥y

is the distance from the center) and comparing them with the full
integral, it is possible to determine the applicability of the approxi-
mation based on an isolated line from the known mean distance between
the lines of the band.

It is Aifficult to calculate integral (7) because there is a
large number of lines and because many different calculations are in-
volved. Therefore, an electronic computer must be, used. After (7) is
calculated, we shall need a high-speed computer to solve the rather
complicated system of equations (2).

It is useful to calculate temperature for a number of J,.g and

hs(z) values to establish the dependence of temperature distribution on
seasons and latitude, on temperature distribution in the lower atmos-
Phere, on cloudiness, etc. We must note that the considered formalism
of the temperature calculation in the framework of the radiative



equilibrium theory differs somewhat from the (not very accurate) method
of calculating temperature which tekes into account turbulent and
molecular heat conductivity, if the turbulent and molecular heat ex-
change coefficlents are known.

An almost trivial generalization of the results mentioned above
1s achieved when the influence of thermal conductivity is taken into
conslderation.

At the same time we shall calculate the following integrals which
gre pertinent to the theory of ra.dia.tion transfer:

Jku(s)ds
J‘durle a 1,

;T'du [1-2E, (a, by v) |,

_1 dvk,(a) E, (a, b; v) ,

Tk, ® £ 5o .

The programming of ca.lculations on the M-20 electronic computer hes now
been completed, and some of the calculations have been made.

The average time it takes to calculate one integral is from half
a8 minute to two minutes.

As the solution of the problem requires the calculation of a
large number of Integrals it was expedient to determine the possibility
of using the spproximation of the intense line (see[l])

By comparing the integrals computed accurately with those com- °
puted by the approximate formulas, we established; the limits of appli-
cability of the given approximstion for the 15u band of CO

If 8 > 0.3 em™! (cm-atm)™, which includes approximately half of
the considered Iines of the mmin vibratiomal transition, then the inte-

gral ~.
b

jku(s)ds
~[‘dy[le a. ]

which represents rldiation ‘sbgorption, may be caleulated within 1 per-
cent of accuracy or better by the approximate formula for atmospheric
layers with a lower boundary & > 45 km.

The limits of applicabllity of the approximation evidently
depend upon the thickness of the b-a layer.

For the most probable & the given accuracy requires a layer
thickness of not less than 3 km. -



Q}Egnse wings of the lines occurs in spectrhl

With decreasing S, the range of application of the approxi-
mate formula decreages rapidly.

At 820,03 em™1 (cm—atm)-l, sufficient accuracy can be obtained
only for layers with a £ 35 km.

The same is true when the approximation of the intense line is
used for calculating the integrals

Ldvku(a)k (0 Ey(a, b5 v),

00
representing the contribution of the atmosphere at the "a" level to
heating at the "b" level (or vice versa).

However, in this case the range of application of the approxi-
mate formulas is someyhat narrower and depends, in particular, on the
position of the upper boundary of the b layer. -

For intensitles ot T, 0.5, and 0.03 en"t (cmata)~L , the
approximate maximm values of & sre 45.35 and 30 lm, respectively, and
the corresponding maximum possible values of b are 90.85 and 65 km.

It is more Iikely that a less intense line contributes less to
heating than a more Intense one,

But 1t was found that for certain optical thicknesses the de-
crease of S in a given range causes not only a reduction in the decrease,
of the integral values, but also an increase after which the values of
the integrals decrease again.

Here are some examples?

1) heating of the atmosphere at 65 km from the layer near 25 km at

§ = 0.0003 cm™’ (cm-atm)~! 1s nearly the same as at S = 0.3 cm~L

(cm-atm) -1 3
2) heating at 80 km from the atmospheric layer near 40 km at

S = 0.003 cm™’ (cm-atm)™! is 10 times greater then that at S =

3 emt (cm-atm) -1
It considerably increases the role of the lines of low intensity
in the thermal regime of the mesosphere, especia.l]g for the layer from
60 to 90 km.
The reason for this phenomenon evidently is the change in the
shape of the line along the path of a ray.
Emission from below due to the near Iorests shage;gggzggéiiiﬁi

Absorption 2t *t&eumr Tovels &epends on Ifnes with = shape
close to Doppler's whose width hardly changes in the atmosphere and
whose wings are weak.



The decrease in intensity results in a shift of the spectral
intervals where absorption occurs towards the center of the line.
-y Therefore, the emission coming from below is absorbed not

only by the weak ‘wings|but also by the intense central part of the
line.

So "the effect of the shift” does not only compensate for, but
also exceeds the effect of a decrease in the intensity of the line.

From this it follows that it is of primary importance to take
into account the change in the form of the spectral line with elevation
in the problem of radiative flux divergence in the mesosphere.

Now we shall discuss the temperature distribution in the ther-
mosphere which is being studied by Y.P. Suslov. Calculations of the
vertical temperature distribution are based on the followlng assump-
tions:

1. The sgyrce of heating is solar radiation which is absorbed in the
thermosphere at wavglengths < 1700 X (especially the emission lines
at wavelengths A = 300-800 &, in particular, the helium lines 304 X
and 584 R).
2. The temperature distribution depends on the relationship between
the divergence of the thermal energy flux as a result of the absorp-
tion of solar radiation and its loss by molecular heat conductivity
and the natural infrared emission of the thermosphere.
3. The thermosphere is in a state of thermal equilibrium (the tem-
perature of electrons is approximstely equal to that of atoms and
molecules, the natural infrared emission is thermal).

) If we accept these agssumptions, the temperature distribution in
the thermosphere can be represented by the thermal conductivity equa-
tion

d dT _ |
- (A gz ) +q‘(z) -1(z) =0. (9)

where T is temperature, q 1s the amount of thermal energy received by
1 cmd per sec at a level z as the result of the absorption of ultra-
violet solar radiation; 1 - is the natural emission of 1 cm3 per sec at

the z levels; A= a!r3/h is the thermal conductivity coefficient (a is
a constant, somewhat dependent on the chemical composition of the
atmospheres.

Ultraviolet radiation is absorbed in the contimious spectrum
(dissociation and photionization); therefore, the weakening of solar
radistion in the thermosphere is exponential, The intensity of inci-
dent radiation at the z level is equal to



- o]

1 J@=de - osecf £ ndz’ (10)

where J g 1= the solar radiation flux on 1 cm2 per sec at the boundary

of the atmosphere;
.0 1s the absorption cross-section, 8 is the angle of the sun at

@©

Zenith, j ndz is the amount of radiation absorbing particles in an at-
z‘
mospheric column from the z level up to « .
It has been assumed that the distribution of particles with
height is expressed by the barometric formils

T
n(2) =200 exp (- [ £2 ), (11)
Zo
‘ Substituting (11) in (10) we get

Z
—‘Gsec'GI ESTE‘—’ exp (—j%dz') dz. (12)

z Zo .

J@Z)=Jdo e
2
The quantity of energy absorbed by 1 em in 1 sec is equal to

QJd—Z@)- = PsecBn (z) J (2). (13)

S0, without considering the losses due to emission, formula (9) can be
represented in the form:

d

HZ—()\%%)HJn(z) sec 0 -J (z) =_ddi— (AS—E+J(Z))=O (14)

or

dT _
)\E+J(Z)—C
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The constant C is determined by assuming that % = 0 at the boundary

of the atmosphere (i.e. that there is no heat flux here due to thermal
conductivity), amd that J(«=) = J,. Then C = Jp, and equation (1)

is written in the form

o]

)\___ Cdy(L-e SeC I n(z)dz) -0, (15)
z

vhere n(z) is given by (I_'L) ‘[‘
S -0 sec 6 J n(z)dz]
The value Q—Jo [1-e

is the energy absorbed in an atmospheric column from the z level to ‘mo
(teking into account that different lines of the incident radiation
have different intensities and different absorption cross-sections,
this value, in reality is equal to ©

Q- E Joi[1-e" Olksec GJr nk (z)dz]
. ’
Z
where summation is performed according to the wavelengths as well as to
atmospheric components). Taking into consideration the losses of energy

due to thermosphere emission, we can present formula (9) in the fellow-
ing form: ©
A—+E Joj (1 -e

ik sec J‘nkdz -L=0
i,k ' Z

(16)
shere L=]1(2) dz

R
As there are no molecules with a dipole moment in the thermo-
sphere, its own radiation is small. As stated by D.R. Bates, transition

0(?31-) -, O(Pg) + hv (0.020 ev ) of atomlc oxygen plays the chief role
'{‘Ai' T .

in the thermal emission of the thermosphere. Therefore, if we assume
that the medium is optically thin, the thermsl emission of the atmospher-
ic column from altitude =z to '« is equal to

L(z) =APJ%(Z) dz, (17)
Z




where A - is the probability of transition, P is a function giving the
number of atoms in the excited state for a given transition*, and no(z)

is the amount of oxygen atoms in 1 cm3.

The values A, L, and Q depend on temperature T which i1s an unknown
function of Z. The dependence of density on temperature is very im-
portant. Therefore, in order to find T from equation (16), we must use
the method of successive approximations, in which Q, L and A are com-
puted first for the given temperature distribution, and then T is deter-
mined from (16). The temperature distribution obtained is used again to
determine Q, L, and A » then the temperature is computed once more, etc.

The solar spectrum in the extreme ultravioclet region is not
sufficiently known yet; in particular the important helium lines 304+ R
and 584 K. Nor are the values of the absorption cross-sections well
known.

The composition of the thermosphere at different altitudes is not
known for certain either.

The lack of these data does not make it possible to find the
exact solution of the stated problem.

However, 1t is possible to find some common features of the tem-
perature distribution at different altitudes in the thermosphere based
on the assumptions made earlier, and the dependence of this distribution
on the main parameters (incident energy, the absorption coefficients,
and density).

The calculations were made by representing incident radiation by

two lines having absorption cross-sections of sbout I - 1()"18 cn?
corresponding to maximum absorption at an altitude of 100-120 km.CE layer,
continuous humann-Runge X-ray radiation), and I 10'17 cn? with
maximm absorption at an sltitude of 160-180 km (F layer, helium lines
308 & and 584 R, and other lines at A < 800 R&).

The results of our calculations lead to the following conclusions:
1. The temperature gradient in the thermosphere is positive everywhere
and decreases evenly with altitude. This results in the appearance of a
practically isothermal region in the upper part of the thermosphere at
an altitude of 260-300 km.

¥ Assuming equilibrium distribution, we get

p= g, exp (- e,/kT)
g+ g1 exp (- e//KT) + g5 exp (- e/KT) *

where & 8y, 8, are statistical weights, and €;, €, are the energies of
the corresponding states.




The losses of thermal energy in the entire thermosphere ag a result
of emission are less than the energy absorbed, l1.e. § = L > 0 in the
entire thermosphere (fig.2).

2. In order for the temperature to rise to about 1200-1800°K in the iso-
thermal region, the energy absorbed amd converted into heat must reach
1.5-2.5 erg/cm® sec.

This means that in order to maintain the foregoing temperature
in the thermosphere, minimm solar radiation energy must be 3.5-5.6 erg/

/cut sec, and 1.2-2 erg/c® sec must be provided by radiation of A <
800 X and absorbed in the F.layer.

3. Most of the energy is absorbed below 200 km. The greatest tempera-
ture gradients are found below 150-170 km, ranging from 17° K/km with an

energy of 1.5 erg/cm? sec to 30° K/km with an incident energy of 2.5

erg/cm? sec at an altitude of 120 km.

An increase in density, or in absorption cross-sections, results
in an increase of the maximm absorption level and, consequently, in
higher temperatures at the same incident energy.

4. The greater the radiation absorbed in the F layer, the higher the
temperature in the middle and upper thermosphere.

5. The amount of energy absorbed per cr® diminishes at oblique incidence
and the length of the path along which absorption takes place increases,
i.e. the maximim gbsorption altitude increases.

These two factors oppose each other, but the influence of the
first is greater and, as & result, the temperature of thé thermosphere
decreases from the lower towards the middle latitudes.

The problem of the temperature distribution in the thermosphere
was solved by O.P. Filipovich in .a different msmer.

Estimates of the role of different factors in the heat régime of
the upper atmosphere are given in monograph [21.

This monograph also discusses a method of theoretically deter-
mining the temperature distribution in the upper atmospheric layers.

Here, the equation of energy conservation or the generalized
thermal conductivity equation was used as & starting principle.

Further the thermal conductivity equation was used to actually
calculate the vertical temperature distribution in the thermosphere
(i.e. at altitudes above 100 km).

However, in addition to the method of determining T (z), from
the equation of energy conservation, there is another method that may be
used to solve this problem. '

The temperature distribution can be determined from empirical
data on the density of the atmosphere (whieh have been obtained chiefly
by means of rockets and satellites [3]) by using the equation of hydro-
static equilibrium (dp = ~ gdz) combined with the equstfon of state of
an ideal gas (p = nkT).

4
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The second method is often used in constructing models of the
“upper atmosphere.

1. Determining the Temperature of the Thermosphere from the
Thermal Conductivity Equation.

The equation for average temperature
——(A )+ q(z) -T(2) = (18)

was tgken as & sta,rting point, where A 15 the thermal conductivity
coefficient, (q - I) is the radiative energy converted into thermal

energy, written as the difference between absorbed energy ('ci) and radi-

ation (T) of 1 cm3 of gas per second.
Equation (18) is derived from the more accurate equation of

thermal conductivity

o) a-n=41, (19)

where ¢ 1s the heat capaclity of a unit volume if the temperature is
expressed as

T (z,t) =-T—(Z)+ AT (z,t), (20)

where AT(z »t) are the temperature fluctua.tions [2, ch.1xl.
Since thermal conductivity A= A (z,T) depends on temperature,
T(z) can be determined from equation ( 18), for instance, by the method
of successive approximation which was used by F.S. Johnson (see [2]).
However, the solution of equation (18;§ can be considerably
.8implified if we represent the thermal conductivity coefficient by
the following expression:,

A@) = A @) T (@), (21)

where function A (z) depends on the composition of the atmosphere.
Taking into account (21), the complete solution of equation
(18) can be written as

7! 1

———

- , +1
T {6+ 1) T e A(O)IA(Z IA(Z) I(q—l)dz”]} , (22)

Zo Zo
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where Zg and zé are the lower and the upper boundaries of the region und.eri

consideration.

Solution (22) is the initial formula from which the vertical
temperature distribution has been calculated.

As we can see from (22), the following data are needed to deter-
mine T(z):
%; _?he distribution of the radiative heat flux divergence with altitude

g-1).

2. The dependence of A(z) on altitude.
3. The average temperatue T(zo) at the initial boundary of the layer
under consideration.
k. The mean heat flux at the upper boundary of the layer

== 7 = 4
Q) =T A () Ll =) ) 2LLea)

The results of calculations of T(z) are given in fig.3.

Data for g were taken from F.S. Johnson's study [4], the data on
the dependence of function A(z) on altitude were taken from M. Nicolet's
work LS].

As there are no accurate data on the magnitude of heat fluxes
from the upper boundary of the region under study (h = 500 km), outer
fluxes of O, 0.1, 0.5, and 1.0

erg/cnf sec have been considered.
As we can see from fig.3, consideration of the outer heat fluxes
entering the earth's atmosphere greatly affects temperature distribution.

1/2, with the outer flux varying from

So, for instance, for A~ T
0.1 erg/cm? sec to 1 erg/cm? sec, the temperature at the 200-km level
varies from 1150° to 1910°; at the 300-km level, it varies from 1400°K to
2780°K; and at the 500-km level, from 1500°K to 3790°%K. o

We. know that the difficulty of determining T(z) in the thermo-
sphere is principally associated with the absence of reliable data on
the composition of this regionm.

In this respect it is interesting to calculate temperature distri-
butions for varying distributions of atmospheric components with altitude.

For the same composition variant, the change in the temperature
curve, caused by the difference in the values of the outer fluxes as well
as by the difference in the dependence of the coefficient of thermal con-

ductivity on temperature ()\--le/2 3 A~*T3/h), preserves the same features
as in the distribution shown in fig.3.

The difference in the temperature curve caused by the difference
in the initial data om the composition of the upper atmosphere amounts
to 10-15 percent.
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2. Determination of Temperature from the Equation of Hydro-
static Equilibrium and From the Main Equation of an Ideal Gas

The second method of determining T(z) is based on the equation
of hydrostatic equilibrium

dp = - ol (23)

and on the equation of state of an ideal gas

p= Z}pi = nkT. (24)

(=2 mijnj =m-+n; n=23I nj).
i ‘ i
Equations (23) and (24) give the relationship between density
and temperature

T | m(z)g(z)
o) = p(zO)—r‘nzT;’)—%{fo)L Z{ kT 92, | (25)

This shows that empirical denslty data make it possible to obtain
information on temperature distribution only if the distribution of the
mean molecular mass m(z) (or the mean molecular weight M = Nm) with
‘altitude 18 XnownJ

Equations (23) and (24) were used by 0.P. Filipovich to solve
the two following problems:

a. TFinding the molecular temperature from data on atmospheric density
at altitudes above 100 km;

b. Finding the true temperature from atmospheric density data (the last
problem is concerned with correcting D.R. Bates' model [7] according
to which isothermal conditions are found at altitudes exceeding approxi-
mately 200 km).

To find the molecular temperature, the method of the immediate
integration of the equation of hydrostatic equilibrium

z

P@) =plzo) -] p@E@NZ, (26)
| Zo
was used, which, together with (24), give5°

Top(2) =250 T ze) - B Ip(z)g(z)dz (27)

Zo
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However, formula (27) cannot be used to determine Tﬁ(z) in practice.

This is due to the fact that the first, and most important, member in
(27) is extremely sensitive to the minor mistakes jxxp(zo) or Tm(zo).

This difficulty can be eliminated if the equation of hydro-

static equilibrium is integrated from zy to z, where Zq is the upper
boundary, and not from Zg to z.

Then instead of (27) we have

=-0(z1)

Tm(® =5 Tm(zl)f’ DIk j o()g(z)dz. (28)

In expression (28) the second member plays the main role as the
first member decreases exponentially with decreasing altitude. - o

The results of calculations of the molecular temperature from equation
(28) are presented in fig.h.

As we can see from fig.h, the distribution of xm(z) differs con-

siderably from the distribution of Tm(z) obtained by the ARDC-1959
model. (Note that'we proceeded from the distribution of f)(z) ac-

cording to H. Kallman's model [8]).

The results of calculations of the true temperature T(z) (the
lower combination of curves) are also presented in fig.h.

To determine T(z), we used the distribution of Ty(z) thus obtained
and the data on variations of the molecular weight with altitude given
in L.E. Miller's study [9]l. (The obtained distribution of T(z) is,
generally speaking, of no interest because, in our opinion, the data on
L.E. Miller's m(z) curve are not reliable.)

Iet us now find the true temperature by other methods.

In this case the main purpose of calculating T(z) was to deter-
mine whether D.R. Bates' [7] conclusion about the presence of isothermal
conditions above 200 km is correct, without attempting to obtain more
accurate results than those obtained by other authors.

L ' conclusion fellows theoretically from the absence of a
héat flux fram the outer bsundary of the uppertﬁtnmspbef%. 7!

- In accordance with our purpose, we proceeded from the assumption
that there is a diffusion equilibrium among the main atmospheric com-
ponents (02, 0, NQ) above the 120-km level, as assumed by D.R. Bates,

and from his boundary values for the temperature and concentration of
the different components of the atmosphere.
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In calculating T(z), we proceeded from the values of density
p (z) given by H. Kallman's model [8].

We did not take, as D.R. Bates did, the definite analytical
form for the temperature curve which would have certainly provided for
isothermal conditions at high altitudes, but immediately determined the
t?mgerature agreeing best with the experimental values of density
Plz).

To do this, we divided the altitude interval under consideration
{from 120 km'<z < 400 km) into layers 5-10 km thick and approximated
its te.persture curve by the linear function

T(z) = T(zo) + @ (Z - Zo), Zo SZ <7y, | (29)

where Zg is the lower boundary of the layer, z 1is the upper boundary,

ar
o = gz 1s the temperature gradient, which is constant for the given

layer.
Using, as D.R. Bates did, the equation of diffusion equilibrium

|

for each component Li_ pi = pjgdz ), . the equation for the state of an

ideal gas P; = n kT, and condition (29), we get

Z) 1)

- (A
) = T myny(zo) (1+“—(—T(7Z‘2)l) ko (30)

Equation (30) was solved by the sampling method which consists

in selecting for each layer a value for gradient a at which density
p (z), calculated from formula (30), agrees best with the empirical
value for P(z).

The results of the calculations are given in fig.5.

In addition to the curve for T(z), obtained from equation (30),
fig.5 gives the curves obtained from the thermal conductivity equation
(for a heat flux of O and 0.1 erg/em® sec), as well as the temperature
distribution curves of D.R. Bates and those based on the ARDC-1959
model and A.A. Poklumnov's [10] model.

As we can see from fig.6, the curve for T(z) obtained by us
differs from that of D.R. Bates 17] and corresponds to a s E mperature '
increase with altitude.

The following conclusions can be derived when comparing the curves
obtained from the equation of hydrostatic equllibrium and the thermal
conductivity equation.



18

The temperature calculated from the thermal conductivity equa-
tion increases with altitude more steadily and slowly up to an altitude
of 300 km than the temperature calculated from the equation of hydro-
static equilibrium.

This difference may be due, on the one hand, to the fact that

solar energy ( @, (z)) is absorbed in a narrower altitude interval than

that assured by F.S. Johnson, and, on the other hand, to the fact that
F.S. Johnson's values for q(z) (which we used to calculate T(z) from
the thermal conductivity ‘equation) are semewbat tog low..

At altitudes above 300 km, the distribution of T(z), obtained
from the equation of hydrostatic equilibrium, agrees closely with that
obtained from the thermal conductivity equation for an outer heat flux
of 0.1 erg/cmP sec.

For the convenience of comparison of our results with those of
other authors, fig.6 gives the temperature distribution curves based on
different models.

As we can see from fig.6, there are considerable discrepancies
in results of temperature calculations based on the models of different
authors.

These discrepancies can be attributed to differences in the
methods used to construct the models, to the initial assumptions made
concerning the diffusion equilibrium level, to the assumed power of
particle dissociation at different levels, and also to the difference
in the initial dsta on the distribution of atmospherlc density with
altitwds, . e S —

It 18 &kfmtm'ul that mls based on mcket ani

data are of espécial interest at the present time. L

However, we must emphasize that until reliable data on the com-~
position of .the upper atmosphere are obtained, it will be difficult to
say which model is preferable.

In fact, any model answering the empirical values for density
e (z) may be considered practical.

From this point of view the value of constructing models lies in
that all possible veriations of the composition of the upper atmosphere
which give the same distribution for density P (z) may be considered.

There is also a great difference between the temperature “sensi-
tivity"™ toward changes in relative concentrations (i.e. in the composi-
tion of the atmosphere) in models constructed by means of the equation
of hydrostatic equilibrium and the equation of state and in models
constructed by means of the thermal conductivity equation.

This difference can apparently be explained by the difference in

physical phenomena teken into consideration in the two equations used in

the two methods. :

Then, the curve corresponding to an outer heat flux of 0.1 erg/
/cn? sec is similar in nature to the curve for T(z) in A.A. Pokhunov's '
model [lolconstructed to an altitude of 200 k@.
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1

It should be pointed out that A.A. Pokhunev's distribution of
T(z) is based on direct measurements of the neutral atmospheric com-
position and does not make any assumptions as to the composition of the
atmosphere.
In conclusion, let us note that the temperature in the ARDC-1959
model increases with altitude at the same gradient (0.5 degree/km) as

in our curve obtained by means of the equation of hydrostatic equilibrium.
The higher absolute temperatures in the ARDC-1959 model, compared
with ours, can be attributed to differences in basic assumptions about
the composition of the atmosphere.
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Fig. 2 — Results of calculations of vertical temperature distribution in the
thermosphere with different values for radiant energy cohiVe¥ted into
thermal energy. '
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Fig. 3 — Results of calculations of temperature distribution with alti-
tude. Four curves correspond to each of the four values of the energy
flix F (zg): _
Two curves for F.S. Johnson's values for q: q =qJohnson (from
which the continuous thin line corresponds to the dependence A ~ T 3/4,
and the continuous thick line to A ~ T 1/2) and two curves for the value

q= qu*tzmsoE (dotted line for the dependence A\ ~ T 3/4 and the dashed
line for A ~ T 1/2).
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Fig. 4 — Comparison of the molecular temperature obtained from the . La

equation of hydrostratic equilibrium with the ARDC-1959 model and
of vertical distributions of true temperature. )
1. Molecular temperature calculated according to (28). -
2. Molecular temperature calculated according to ARDC-1959.
3. True temperature by ARDC-1959.
4. True temperature by (22) taking into consideration L.E. Miller's
data on the chemical composition of the atmosphere.
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Fig. 5 — Comparison of the temperature distribution based on (30),
according to the models of D.R. Bates, ARDC-1959, and
Ba A POKAINGV..
1 - according to (30); 2 - by D.R. Bates; 3 - from the thermal
conductivity equation with F = 0.1 erg/cm2 sec; 4 - the same with




2500

2000

1500

1000

500

%
3
5.
K

!

A
1

T°K

-
Pokhunov
1 1 A —e h,km
0 200 400 600

Fig. 6 — Temperature distributions corresponding to the different

models of the atmosphere.
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